REV.	DESCRIPTION	ER NUMBER	DATE	APPROVAL
1.8	REVISED PER	ER-48506	$05 / 07 / 20$	A.LETSO
1.7	REVISED PER	ER-48494	$04 / 29 / 20$	A.LETSO
1.6	REVISED PER	ER-47995	$08 / 06 / 18$	A.LETSO

SPECIFICATION CONTROL DOCUMENT, SERIES 200, LIGHT-EMITTING DIODE (LED) LIGHTED PUSHBUTTON SWITCHES AND INDICATORS

This page intentionally left blank

Use or disclosure of restrictions of the titl	on this sheet is subject to ocument.	${ }^{\text {sile }} \mathrm{A}$	$\begin{gathered} \text { Cace code } \\ 12522 \end{gathered}$	${ }^{\text {owg No }}$ SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI SHEET 2 OF 79	

Table of Contents

Section Page
1.0 SCOPE 7
2.0 APPLICABLE DOCUMENTS 9
2.1. Staco Systems Documents 9
2.2. Government Documents 9
2.3. Order of Precedence 10
3.0 THE SERIES 200 PRODUCT LINE 11
3.1. Characteristics and Standard Features 11
3.2. Coded Configuration 12
3.3. Matrix Frame Assembly 18
4.0 General Specifications 21
4.1. Outline Dimension 21
4.2. Mechanical Specifications 36
4.3. Electrical Specifications 40
4.4. Display Specifications 47
4.5. Optical Performance 50
4.6. Environmental Specifications 56
4.7. Material Requirements 58
4.8. Other Requirements 59
5.0 Ordering Information 65
6.0 Accessories 71
6.1. Guards: See Table XXVI: Switch Guards 71
6.2. Tools 72
7.0 Technical Bulletins 79

$|$| Cactabe |
| :---: |
| 12522 |

Figures

Figure
Page
Figure 1: Pushbutton Switch - exploded view (Splash-Proof and PC Termination Extended Version Shown)... 11
Figure 2: Splash-Proof (Solder Termination Extended Version Shown) 14
Figure 3: Watertight (Solder Termination Version Shown).. 15
Figure 4: Splash Proof (Crimp Pin Termination Extended Version Shown).................. 16
Figure 5: Watertight Details ... 17
Figure 6: Splash Proof (PCB Termination Extended Version Shown, Panel Spacers and
Mounting Sleeves not shown for clarity) .. 17
Figure 7: Locking Mechanism (Splash-Proof Extended Version Shown) 17
Figure 8 ... 21
Figure 9 .. 22
Figure 9A ... 22
Figure 10 .. 23
Figure 10A .. 23
Figure 11 .. 24
Figure 12 ... 24
Figure 12A ... 25
Figure 13 .. 25
Figure 13A .. 26
Figure 14 ... 26
Figure 15 .. 27
Figure 16.. 27
Figure 17 .. 28
Figure 18 .. 28
Figure 19 ... 29
Figure 20: Solder Termination .. 29
Figure 21: PC Termination .. 29
Figure 22: Crimp Termination... 30
Figure 23: Crimp Pin (MIL-C-39029/22-192, Staco Systems P/N: 15276) 30
Figure 24: Hardware (Splash-Proof) .. 31
Figure 24A: Hardware (Splash-Proof and Watertight, Extended) 31
Figure 25: Panel Cutout and Thickness.. 32
Figure 26: Slot Mount for Type I \& III ... 32
Figure 27: Matrix Mount for Type I \& III... 33
Figure 28: Matrix Mount for Type II \& IV .. 33
Figure 29: Flushed Mount - Splash-Proof, Extended Design Shown........................... 34
Figure 30: Flushed Mount - Watertight Design ... 34
Figure 31: Extended Mount - Splash-Proof, Extended Design Shown 35
Figure 32: Extended Mount - Watertight Design.. 35

A	12522
$\stackrel{\text { crase }}{\text { SOME }}$	

Figure 33: Alternate Action Displacement for Splash-Proof Pushbutton Switches, Extended Version Shown .. 37
Figure 34: Mounting Screw Location (Splash-Proof, Extended Version Shown) 39
Figure 35: Switch Terminal Identification ... 40
Figure 36: Typical 5 VDC Linear Dimming ... 45
Figure 37: Typical 28 VDC Linear Dimming ... 46
Figure 38: Typical 28 VDC Non-Linear Dimming.. 46
Figure 39: Legend Area ... 48
Figure 40: Standard Font Size and Style .. 49
Figure 41: Character Height.. 49
Figure 42: Typical Luminance vs Voltage (Non-Linear Dimming) 51
Figure 43: CIE 1931 Chromaticity Diagram .. 52
Figure 44: U.C.S. 1976 Chromaticity Diagram... 53
Figure 45: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown) 59
Figure 46: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown) 60
Figure 47: Non-MIL spec marking (4 pole \& PC Extended Version shown) 60
Figure 48: MIL Spec Marking (4 pole \& PC Extended Version Shown) 61
Figure 49: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown) 62
Figure 50: Part Number Model .. 65
Figure 51: Transparent Switch Guard ... 71
Figure 52: Metal Switch Guard... 72
Figure 53: Pushbutton Extraction Tool... 73
Figure 54: Matrix Switch Extraction Tool... 74
Figure 55: Crimp Tool and Positioner .. 75
Figure 56: Wire Connector Insertion and Removal Tool ... 76
Figure 57: Insulator Plug ... 76
Figure 58: Cleat Assembly ... 77

Tables

Table Page
Table I: Pushbutton Switch Assembly BOM .. 18
Table II: Outline Dimensions... 21
Table III: Mounting Hardware Dimension ... 31
Table IV: Mounting panel thickness maximum.. 35
Table V: Action Characteristic ... 36
Table VI: Actuation Force and Pushbutton Travel .. 37
Table VII: Pushbutton Switch Weight .. 38
Table VIII: Switch and Termination Diagram.. 41
Table IX: Common Circuit Diagrams ... 42
Table X: Bussing Circuit Diagram .. 43
Table XI: Electrical Characteristics... 44

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

A	${ }_{1}^{\text {caseme }}$

SERIES 200 SCD
Table XII: Contact Rating 44
Table XIII: Viewing Area 48
Table XIV: LED Luminance Performance 50
Table XV: Standard Color Limits 51
Table XVI: NVIS Illuminated Color 54
Table XVII: Radiance Requirements 55
Table XVIII: Type 6 Contrast 56
Table XIX: Operating Temperature Range 56
Table XX: Mechanical Option 66
Table XXI: Electrical Option 66
Table XXII: Enclosure Design 66
Table XXIII: Display Style and Character Size Option 67
Table XXIV: Display Type Option 68
Table XXV: Illuminating Color Option 70
Table XXVI: Switch Guards 71
Table XXVII: Crimp Pin and Positioner P/N's 74
Table XXVIII: Accessories Weight 78
Table XXIX: Technical Bulletins 79

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {size }} \mathrm{A}$	$\begin{aligned} & \text { CAGE Code } \\ & 12522 \end{aligned}$	owg	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 6 OF 79	

1.0 SCOPE

This Specification Control Document (SCD) defines the requirements for the Series 200 pushbutton switch assemblies and companion products. Companion products are covered by their respective SCD's.
The Staco Systems Series 200 is a complete product line of high brightness lightemitting diodes (HB LED) lighted pushbutton switches and indicators.
This product line meets the general requirements of MIL-PRF-22885, and, in matrix form, MIL-S-24317.

The high-brightness LED light source is qualified for NVIS under MIL-L-85762 (when applicable), MIL-STD-3009, and MIL-PRF-22885.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }} \mathrm{A}$	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	${ }^{\text {owc }}$	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 7 OF 79	

This page intentionally left blank

Use or disclosure of restrictions of the titl	on this sheet is subject to ocument.	${ }^{\text {SIIE }}$ A	$\begin{gathered} \text { cage code } \\ 12522 \end{gathered}$	DwG No	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 8 OF 79	

2.0 APPLICABLE DOCUMENTS

The following documents form a part of this document to the extent specified herein. Where specific paragraphs are called out, all subordinate paragraphs also apply. Where individual paragraphs are not specified, the document is applicable in its entirety.

2.1. Staco Systems Documents

Series 200 SCD

ICD-F2H
ICD-R2H
Specification Control Document, Series 200, LightEmitting Diode (LED) Lighted Pushbutton Switches and Indicators
Interface Control Drawing, Front Mount Matrix, S200
Interface Control Drawing, Rear Mount Matrix, S200

2.2. Government Documents

Military Specifications

MIL-PRF-22885 General specification for switches and illuminated push button.
MIL-S-24317 General Specification for Switches, Multi-station, Pushbutton.
MIL-DTL-5541 Chemicals conversion coating on aluminum alloys (chemical-film).
MIL-A-8625
MIL-R-25988
MIL-G-45204
MIL-I-45208
MIL-S-901
MIL-L-85762
Anodic Coatings for Aluminum Alloys.
Oil and Fuel Resistant for Rubber, Fluor silicone Elastomer.
Gold Plating, Electrodeposited.
Inspection Systems Requirements.
Requirements for Shock Tests, High Impact Shipboard Machinery, Equipment, and Systems. Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible.

Military Standards
MIL-STD-202 Test Method for Electronic and Electrical Component Parts.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	12522	${ }^{\text {ows no }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET 9 OF 79	

MIL-STD-108
MIL-STD-454
MIL-STD-889
MIL-STD-45662
MIL-STD-3009

Definitions of and Basic Requirements for Electric and Electronic Equipment Enclosure.
General Requirements for Electronic Equipment. Dissimilar Metals.
Calibration System Requirements.
Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible.

2.3. Order of Precedence

In the event of conflict, the requirements of the following documents shall apply in the priority shown:
MIL-PRF-22885
Specification control document S200 (SCD 200).
Other referenced specifications, documents and drawings.
Nothing in this document supersedes applicable laws and regulations unless a specific exemption has been obtained.

Use of shall, should, may and will: In this SCD, "shall" is used to express a provision that is binding; "should" and "may" are used to express a nonmandatory provision; and "will" is used to express a declaration of intent.

Use or disclosure of restrictions of the title	d on this sheet is subject to ocument.	${ }^{\text {SIIE }}$ A	$\begin{aligned} & \text { CAGE CDOE } \\ & 12522 \end{aligned}$	OwG No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEE SHEET 10 OF 79	

3.0 THE SERIES 200 PRODUCT LINE

This section provides an overview of the $\$ 200$ standard product characteristics, plus features, options, configurations, and accessories.

3.1. Characteristics and Standard Features

The Series 200 Ultra-compact line of switches represents an integration of 4 -pole switching capabilities, advanced LED lighting performance, and Military grade reliability in a subcompact package.
Series 200 switches are unique in that the pushbutton is an attached integral part to the switch by means of flex circuit (see Figure 1: Pushbutton Switch - exploded view (Splash-Proof and PC Termination Extended Version Shown), and shall not be separated from the switch's main body. The pushbutton should only be extracted from switch's main body, when necessary, to access the mounting screws.
Other standard features of the Series 200 include:

- Shortest switch on the market
- Non-reflective surface
- Lowest operating temperature
- Uniform LED illumination
- Lightest weight: 11 grams
- Clarity of legends
- Lowest power consumption
- Gold plated fine silver switch contacts for low and/or high current applications
- Electromagnetic interference (EMI) shielding for EMC requirement applications
- High brightness light-emitting diode (HB LED) light source.
- LED polarity insensitive

Figure 1: Pushbutton Switch - exploded view (Splash-Proof and PC Termination Extended Version Shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { Cage coos } \\ & 12522 \end{aligned}$	OwG No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET 11 OF 79	

3.1.1. Standard Options
3.1.1.1. Mechanical.

See Table XX: Mechanical Option.
3.1.1.2. Electrical.

See Table XXI: Electrical Option.
3.1.1.3. Enclosure Design.
3.1.1.3.1. Splash Proof:

See Table XXII: Enclosure Design.
3.1.1.3.2. Watertight.

See Table XXII: Enclosure Design.
3.1.1.4. Display
3.1.1.4.1. Display Style.

See Table XXIII: Display Style and Character Size Option.
3.1.1.4.2. Legend Style and Size

Font style - Alternate gothic number II
Font height - 0.072", 0.087", 0.100", 0.125", and 0.145 ". See Table XXIII: Display Style and Character Size Option.
3.1.1.5. Optical
3.1.1.5.1. Display Type: See Table XXIV: Display Type Option.
3.1.1.5.2. Illuminated Color: See Table XXV: Illuminating Color Option.

3.2. Coded Configuration

Coded configurations defined in this section are to identify various characteristics and options which are available with standard Series 200 switches.
3.2.1. Standard Coded Configuration

The following enclosure designs defined in MIL-PRF-22885 are available in the Series 200 product line, as shown in Table XXII: Enclosure Design.
The coded part numbers for splash-proof (type I and III), watertight (type II and IV) are as follows:
2Hxxx-xxx1xxxxxxx S200 splash-proof pushbutton switch / indicator.
$2 H x x x-x x x 2 x x x x x x x$ S200 watertight pushbutton switch / indicator.

Use or disclosure o restrictions of the title	ed on this sheet is subject to ocument.	A	$\begin{aligned} & \text { Aage coos } \\ & 12522 \end{aligned}$	${ }^{\text {WWGNo }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	w	Ster SHEET 12 OF 79	

Figures 2 thru 5 depict a typical splash-proof and watertight enclosure designs, in various terminations.
Each switch or indicator assembly intended for individual mount application is provided with a set of mounting hardware, which consists of a panel spacer and two mounting sleeves. These are used in conjunction with the mounting screws and cam nuts (located on two opposite sides of switch's main body) to install the switch/indicator to the panel. Refer to Figure 6: Splash Proof (PCB Termination Extended Version Shown, Panel Spacers and Mounting Sleeves not shown for clarity). Bill of materials (BOM) for each configuration is shown in Table I: Pushbutton Switch Assembly BOM.
Each splash-proof pushbutton switch assembly is provided with a splash-proof panel seal to meet the splash-proof requirements of MIL-PRF-22885. Refer to Figure 2: Splash-Proof (Solder Termination Extended Version Shown) and Figure 4: Splash Proof (Crimp Pin Termination Extended Version Shown)
Each watertight pushbutton switch assembly is provided with a watertight pushbutton seal assembly and panel seal, which prevents leakage of water, sand and dust. This system meets the watertight requirements of MIL-PRF-22885. Refer to Figure 3: Watertight (Solder Termination Version Shown) and Figure 5: Watertight Details.
For extended mount applications, the panel spacer may be used. This feature is to enable the pushbutton to align with commonly used edge-lighted panels when applicable. For flushed mount application, the panel spacer can be discarded. Refer to Figure 29: Flushed Mount - Splash-Proof, Extended Design, Figure 30: Flushed Mount - Watertight Design, Figure 31: Extended Mount -Splash-Proof, Extended Design and Figure 32: Extended Mount Watertight Design for flushed and extended mounts outline dimensions.
A keying feature is designed to ensure that pushbutton can only fit into the switch's main body one way. Similarly, a snap-retainer mechanism is designed into the pushbutton to ensure that it cannot become separated from the body unexpectedly due to shock, vibration, or sudden hand movement, whatever the position of the pushbutton. See Figure 7: Locking Mechanism (Splash-Proof Extended Version Shown) for snap-retainer mechanism.

- CA

Figure 2: Splash-Proof (Solder Termination Extended Version Shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {S12E }} \mathrm{A}$	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	DWG NO	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 14 OF 79	

Figure 3: Watertight (Solder Termination Version Shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.	SIIE A	CAGE CODE 12522	SWG NO	SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE	SCALE			
DRAWING					

Figure 4: Splash Proof (Crimp Pin Termination Extended Version Shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sizE }} \mathrm{A}$	CAGE CODE 12522	ow	SERIES 200 SCD	${ }^{\text {ReV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 16 OF 79	

Figure 5: Watertight Details

Figure 6: Splash Proof (PCB Termination Extended Version Shown, Panel Spacers and Mounting Sleeves not shown for clarity)

Figure 7: Locking Mechanism (Splash-Proof Extended Version Shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {size }}$ A	CAGE CODE 12522	ows	SERIES 200 SCD	${ }^{\text {ReV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 17 OF 79	

Table I: Pushbutton Switch Assembly BOM

Part Number	Description	Splash-proof Type I I		Type III Typatertiaht
-	Tyushbutton Switch	Type IV		
15097	Panel Seal	1	1	-
$15196 / 005$	Watertight Panel Seal	-	-	1
-	Panel Spacer (0.150)	1	1	1
-	Mounting Sleeve 1 (0.060)	2	2	1
-	Mounting Sleeve 2 (0.080)	1	1	1
-	Mounting Sleeve 3 (0.130)	1	1	-
156106	Receptacle Assembly	-	1	-
	QTY	QTY	QTY	QTY

3.2.2. Customized Configurations

Customized configurations are unique in which they conform to a specific customer-defined configuration and/or have unique requirements for performance, marking, or both.
Customized configurations shall be designed and manufactured to meet the general requirements of MIL-PRF-22885 whenever possible. However, specific customer-invoked design requirements may compromise certain performance characteristics and thus prevent total compliance with the details of the mentioned specification.

23XXXX-TAB numbers shall be used when define non-standard pushbutton switch assembly. Such as:
a. Customized artworks; and/or
b. Customized form, fit, and / or function; and/or
c. Customized marking; and/or
d. When the customers/sales require that a non-coded part number to be used

The XXXX in this model number is a 4-digit, sequentially assigned number. All of these numbers are tabulated and have a threedigit or, under special circumstances, a 3-digit sequential TAB number (Typical example would be 230123-123).

3.3. Matrix Frame Assembly

The pushbutton switch assemblies are available in matrix frames. The matrix frames are available in the following configurations:

ICD F2H - Front dress bezel matrix in solder, PCB , and crimp pin terminations.
ICD R2H - Rear mount flange matrix in solder, PCB, and crimp pin terminations.
Details of matrix frames and specifications are found in Interface Control Drawings ICD-F2H and ICD-R2H.
Matrix assemblies are designed, tested and qualified in accordance to the requirements of MIL-S-24317

Use or disclosure of restrictions of the title	d on this sheet is subject to ocument.	${ }^{\text {sizE }} \mathrm{A}$	$\begin{aligned} & \text { CaGE CDOE } \\ & 12522 \end{aligned}$	${ }^{\text {owg No }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEE SHEET 19 OF 79	

This page intentionally left blank

Use or disclosure of restrictions of the title	d on this sheet is subject to ocument.	${ }^{\text {sizE }} \mathrm{A}$	$\begin{aligned} & \text { CaGE CDOE } \\ & 12522 \end{aligned}$	ows	SERIES 200 SCD	${ }^{\text {ReV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 20 OF 79	

4.0 General Specifications

This section provides an overview of the $\$ 200$ outline dimensions plus mechanical, electrical, display, and optical specifications.
4.1. Outline Dimension

Outline dimensions of splash-proof and watertight switches in various configurations are shown in Table II: Outline Dimensions:

Table II: Outline Dimensions

Seal Description/Option	Enclosure Type	View	Figure
Splash-Proof	I	Front	$\underline{\text { Figure 8 }}$
Splash-Proof	I	Top	Figure 9, Figure 9A*
Splash-Proof	I	Side	Figure 10, Figure 10A*
Splash-Proof	III	Front	$\underline{\underline{\text { Figure 11, }}}$
Splash-Proof	III	Top	Figure 12, Figure 12A*
Splash-Proof	III	Side	$\underline{\text { Figure 13, Figure 13A* }}$
Watertight	II	Front	$\underline{\text { Figure 14 }}$
Watertight	II	Top	$\underline{\text { Figure 15 }}$
Watertight	II	Side	$\underline{\text { Figure 16 }}$
Watertight	IV	Front	$\underline{\text { Figure 17 }}$
Watertight	IV	Top	$\underline{\text { Figure 18 }}$
Watertight	IV	Side	$\underline{\text { Figure 19 }}$

*Extended housing, lens retainer and lens jacket for improved lighting.
Figure 20: Solder Termination, Figure 21: PC Termination and Figure 23: Crimp Pin for termination details. Mounting hardware location and dimension are shown in and Figure 24A: Hardware (Splash-Proof and Watertight, Extended).
4.1.1. Pushbutton Switch and Mounting Hardware

Figure 8

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }} \mathrm{A}$	$\begin{array}{\|c} \text { CAGE Code } \\ 12522 \end{array}$	DWG	SERIES 200 SCD	${ }^{\text {ReV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Shet	SHEET 21 OF 79	

Figure 9

Figure 9A

Use or disclosure restrictions of the tit	d on this sheet is subject to ocument.	${ }^{\text {STEE }}$ A	$\begin{gathered} \text { CAGE CDOE } \\ 12522 \end{gathered}$	${ }^{\text {owg No }}$ SERIES 200 SCD	${ }^{\text {ReV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 22 OF 79	

Figure 10

Figure 10A

Use or disclosure restrictions of the tit	ed on this sheet is subject to ocument.	${ }^{\text {sile }} \mathrm{A}$	CAGE CODE 12522	ows	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Shter	SHEET 23 OF 79	

Figure 11

Figure 12

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {Sl2E }}$ A	$\begin{aligned} & \text { CAGE Code } \\ & 12522 \end{aligned}$	${ }^{\text {owg No }}$ SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 24 OF 79	

Figure 12A

Figure 13

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { CaAE coos } \\ & 12522 \end{aligned}$	OwG No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Ster SHEET 25 OF 79	

Figure 13A

Figure 14

Use or disclosure of restrictions of the titit	ed on this sheet is subje document.	A	EAEECOEO	${ }^{\text {SWG No }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Ster SHEET 26 OF 79	

Figure 15

Figure 16

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { CaAGE coos } \\ & 12522 \end{aligned}$	OWG No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	$\stackrel{\text { scale }}{\text { NONE }}$	wr	Ster SHEET 27 OF 79	

Figure 17

Figure 18

Figure 19

Figure 20: Solder Termination

Figure 21: PC Termination

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }}$ A	$\begin{aligned} & \text { Cage coos } \\ & 12522 \end{aligned}$	owg	SERIES 200 SCD	${ }^{\text {ReV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	I	SHEET 29 OF 79	

Figure 22: Crimp Termination

Figure 23: Crimp Pin (MIL-C-39029/22-192, Staco Systems P/N: 15276)

Figure 24: Hardware (Splash-Proof)

Figure 24A: Hardware (Splash-Proof and Watertight, Extended) Table III: Mounting Hardware Dimension

Symbol	Description	Dimension
A	Splash-Proof Panel Seal* *	$0.030^{\prime \prime}[1.02 \mathrm{~mm}]$
Al	Watertight Panel Seal** $^{2} 0.014^{\prime \prime}[0.35 \mathrm{~mm}]$	
B	Panel Spacer	$0.150^{\prime \prime}[3.81 \mathrm{~mm}]$
C	Mounting Sleeve 1	$0.080^{\prime \prime}[2.03 \mathrm{~mm}]$
D	Mounting Sleeve 2	$0.060^{\prime \prime}[1.52 \mathrm{~mm}]$
E	Mounting Sleeve 3	$0.130^{\prime \prime}[3.03 \mathrm{~mm}]$

* Free height or uncompressed, splash-proof panel seal $=0.04 "[1.016 \mathrm{~mm}]$
** Free height or uncompressed, watertight panel seal $=0.024 "[0.609 \mathrm{~mm}]$

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

A	12522
$\stackrel{\text { scat }}{\text { NONE }}$	*

4.1.2. Mounting Panel

SECTION A-A
Figure 25: Panel Cutout and Thickness

Figure 26: Slot Mount for Type I \& III
${ }_{\substack{\text { sit } \\ \text { sate } \\ \text { NO } \\ \text { NO }}}$

Figure 27: Matrix Mount for Type I \& III

Figure 28: Matrix Mount for Type II \& IV

Use or disclosure o restrictions of the titl	od on this sheet is subj ocument.	A	$\begin{aligned} & \text { Ace coig } \\ & 12522 \end{aligned}$	SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	w	Ster SHEET 33 OF 79	

Figure 29: Flushed Mount - Splash-Proof, Extended Design Shown

Figure 30: Flushed Mount - Watertight Design

Use or disclosure restrictions of the tit	on this sheet is subject to ocument.	${ }^{\text {sile }}$ A	$\begin{gathered} \text { CAGE Code } \\ 12522 \end{gathered}$	DWG	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI	SHEET 34 OF 79	

Figure 31: Extended Mount - Splash-Proof, Extended Design Shown

Figure 32: Extended Mount - Watertight Design
Table IV: Mounting panel thickness maximum

Description	Flushed Mount		Extended Mount	
Switch type	Splash-Proof	Watertight	Splash-Proof	Watertight
Cap protrusion (L1)	$\left(0.130^{\prime \prime}\right)$	$\left(0.336^{\prime \prime}\right)$	$\left(0.280^{\prime \prime}\right)$	$\left(0.486^{\prime \prime}\right)$
Panel thickness Max. L2	$0.330^{\prime \prime}$	$0.320^{\prime \prime}$	$0.180^{\prime \prime}$	$0.170^{\prime \prime}$

*See Figure 27: Matrix Mount for Type I \& III and Figure 28: Matrix Mount for Type II \& IV for flushed and extended mounts details.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {STEE }} \mathrm{A}$	$\begin{gathered} \text { CAGE Code } \\ 12522 \end{gathered}$	${ }^{\text {owg No }}$ SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 35 OF 79	

4.2. Mechanical Specifications

This section provides an overview of the $\$ 200$ mechanical characteristics, features, operation, and specifications.
4.2.1. Mechanical Endurance

The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885.
Switches are tested to MIL-PRF-22885 life cycle requirement as follows:
$1,000,000$ cycles: 5,000 cycles of operation at $-55^{\circ} \mathrm{C}, 10,000$ cycles of operation at $+85{ }^{\circ} \mathrm{C}$, and 985,000 cycles at room temperature.
4.2.2. Operating Characteristics

Below are switch actions available for $S 200$ product line. The pushbutton switches are tested in accordance with the requirements of MIL-PRF-22885 (Table V: Action Characteristic).

Table V: Action Characteristic

MIL-PRF- 22885 Symbol	Action
A	Momentary
B	Alternate
H	Indicator

Indicator - Functions as lighted display only. No switch contacts required.
Momentary - Switches on applying pressure to the pushbutton. The switch contacts return to their normally closed position when the pushbutton is released.
Alternate - Switches on applying pressure to the pushbutton. Switch contacts remain in latch down position when released, and return to their normally closed position when the pushbutton is pressed again.
Below are actuation force, pushbutton travel and alternate action displacement as shown in Table VI: Actuation Force and Pushbutton Travel and Figure 33: Alternate Action Displacement for Splash-Proof Pushbutton Switches.

Table VI: Actuation Force and Pushbutton Travel

Actuation force	2 to 5 pounds (9 to 22.2N)	
Pushbutton Travel	$0.060-0.075$ inches	Pushbutton travel and alternate action displacement is shown in Alternate displacement

UNCOMPRESSED

FULLY COMPRESSED
Figure 33: Alternate Action Displacement for Splash-Proof Pushbutton Switches, Extended Version Shown

Use or disclosure of restrictions of the titl	on this sheet is subject to ocument.	${ }^{\text {sile }}$ A	$\begin{gathered} \text { Cace code } \\ 12522 \end{gathered}$	owg no	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 37 OF 79	

4.2.3. Termination

Solder Terminals. Solder termination shall be tin plated. Switch is tested in accordance to the requirements of MIL-PRF-22885, Para. 4.7.2, MIL-STD-202, Method 208. Terminal strength tests are conducted as prescribed by MIL-STD-211, test condition A. Refer to Figure 20: Solder Termination for details and outline dimensions.
PC Termination. PC termination shall be gold plated to facilitate hand, wave, or reflow soldering methods. Terminal strength is 3 pounds perpendicular to the long axis and 5 pounds parallel to the long axis. Refer to Figure 21: PC Termination for outline dimensions.
Crimp Pin Terminals. Crimp pin terminals are gold plated per MIL-G-45204. Crimp on wire terminations per MIL-C-39029/22-192 in conjunction with receptacle shall withstand a pull force of 5 pounds along the axis of the terminals.
Color band identification and reference dimensions of the Socket Contact used in crimp pin applications are shown in Figure 23: Crimp Pin. Socket is to be used with \#22-24 wire size. \#20 wire shall be used in 5-10 Amp applications. Socket contact is shown for reference only and to be ordered separately. Refer to Figure 22: Crimp Termination for receptacle outline dimensions.
4.2.4. Pushbutton Switch Weight

The typical weight of the switch or indicator, including mounting hardware and the pushbutton, are given in Table VII: Pushbutton Switch Weight.

Table VII: Pushbutton Switch Weight

Description	Termination	Ounces (max.)	Grams (max.)
Splash-Proof Switch Assembly	Solder / PC	0.39	11
4PDT	Crimp Pin	0.60	17
Splash-Proof Indicator Assembly	Solder / PC	0.39	11
	Crimp Pin	0.60	17
4PDT	Solder / PC	0.53	15
	Crimp Pin	0.74	21
Watertight Indicator Assembly	Solder / PC	0.53	15
	Crimp Pin	0.74	21
Mounting Hardware	Panel Seal, Panel	0.07	2

A	12522
$\stackrel{\text { sale }}{\text { sale }}$ NONE	"

4.2.5. Mounting Provision

The location of the mounting screws within the switch body is shown in Figure 34: Mounting Screw Location (Splash-Proof, Extended Version Shown). Refer to Technical Bulletin 215 and 216 for pushbutton extraction and installation procedure for splash-proof and watertight designs, respectively.
The recommended panel cutout for individual and matrix mounting are shown in Figure 25: Panel Cutout and Thickness, Figure 26: Slot Mount for Type I \& III, Figure 27: Matrix Mount for Type | \& III and Figure 28: Matrix Mount for Type || \& IV. The maximum recommended panel thicknesses accommodated by each configuration is shown in Table IV: Mounting panel thickness maximum.
For applications where horizontal or vertical slot mounting of two or more individual mount switch/indicator is required, the following formula provides cut-out dimensions for the slot mounting (see Figure 26: Slot Mount for Type I \& III). L (inches) = $0.752^{\prime \prime}$ X (n-1) + 0.690".

Where:
L = length of horizontal or vertical mounting slot.
$\mathrm{N}=$ number of units in a row or column.

Figure 34: Mounting Screw Location (Splash-Proof, Extended Version Shown)

Use or disclosure restrictions of the tit	d on this sheet is subject to ocument.	${ }^{\text {sizE }}$ A	${ }^{\text {CAGEE CODE }}$ 12522	${ }^{\text {owg No }}$ SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 39 OF 79	

4.3. Electrical Specifications
4.3.1. Schematics

Figure 35: Switch Terminal Identification
Notes:

1. Rows A, B, C, D and columns 1, 2, and 3, identify switch contact terminations.
2. Pins 4, 6, 7, and 9, identify backlight circuit terminations.
3. Pins 5 and 8 identify ground terminations.

Table VIII: Switch and Termination Diagram

Indicator		None	None
Single pole double throw	$\underbrace{(10 y}$	$\begin{aligned} & B 1 \circ a^{B} \circ \mathrm{~B} 3 \\ & B 2 \ldots \end{aligned}$	Bl and B3 (NC) $B 2$ and 33 (NO)
Two pole double throw			Cl and C3 (NC) C 2 and C3 (NO) B1 and B3 (NC) B2 and B3 (NO)
4-pole double throw			D1 and D3 (NC) D2 and D3 (NO) C1 and C3 (NC) C2 and C3 (NO) B1 and B3 (NC) B2 and B3 (NO) A1 and A3 (NC) A2 and A3 (NO)

Note: Shown in normally closed positions.
Refer to Figure 35: Switch Terminal Identification for terminal designations. Shown in normally closed positions

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {STE }}$ A	$\begin{gathered} \text { caes coob } \\ \hline 12522 \end{gathered}$	Owg No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	$\stackrel{\text { scale }}{\text { NO }}$	w	SHEET 41 OF 79	

4.3.2. Common and Bussing Circuitry

The following schematics are 5 VDC standard common, 28 VDC standard common and bussing circuitry diagrams.

For single common applications, it is recommended to the end user that both common terminations (pins 8 and 5) be used as the common return circuit for redundancy.
A typical pushbutton switch could require up to six wires to illuminate all four quadrants of the display. To reduce the number of wire input, a selection of common and bussing option is available as shown in Table IX: Common Circuit Diagrams and Table X : Bussing Circuit Diagram.

Table IX: Common Circuit Diagrams

5 VDC Common Circuit Diagram - View from rear of switch		
Single Common	Horizontal Split Common	Vertical Split Common
28 VDC Common Circuit Diagram - View from rear of switch		
Single Common	Horizontal Split Common	Vertical Split Common

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{array}{\|c} \text { cace coos } \\ 12522 \end{array}$	${ }^{\text {SWG No }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET 42 OF 79	

Table X: Bussing Circuit Diagram

Bussing Circuit Diagram - View from rear of switch			
1-input / Full Screen Display			
Single Common Bussed			
2-inputs / 2-way split display			
$$			
3-inputs / 3-way split display			
	$70-2$ 1 -09 40 -4 3 Bottom Bussed		
4-inputs / 4-way split display			
$\begin{array}{ccc} 7 \mathrm{O} & 2 & 0 \\ 4 \mathrm{O}-4 \\ \text { No Bussing } \end{array}$			

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

A	12522
	"

4.3.3. Operating Voltage

The Series 200 pushbutton switches offer two input voltages, 5 VDC and 28 VDC. For 5 VDC applications, the LEDs are connected in parallel and use 24 mA per quadrant when illuminated. For 28 VDC applications, the LEDs are connected in series and use 12 mA per quadrant when illuminated. There shall be two HB LEDs per quadrant. Refer to Table XI: Electrical Characteristics for power consumption, faceplate temperature and electrical load range.

Table XI: Electrical Characteristics

Lamp Circuit Power	VDC	Watt
	28	1.4
	5	0.5
Lens face temperature:	$10^{\circ} \mathrm{C}$ max. above	

High-brightness Lighted-Emitted Diodes.

The Series 200 switch HB LED utilizes a bridge rectifier in each of its four lighting circuits to provide polarity insensitivity. This enables application in current sinking or current sourcing circuits.

4.3.4. Switch Contact Rating

The switch contacts shall be made and break the currents as listed in Table XII: Contact Rating.

Table XII: Contact Rating

		Sea Level	50,000 feet
28 VDC	Resistive	10.0 Amperes	5.0 Amperes
	Inductive	5.0 Amperes	2.5 Amperes
$115 \mathrm{VAC}, 60 \mathrm{~Hz}$	Resistive	7.0 Amperes	
	Inductive	3.5 Amperes	
LOW LEVEL	Resistive	10 microamperes	
	Inductive		

Note: S200 contacts are designed for universal applications, $10 \mu \mathrm{~A}$ to 10A. However, contacts subjected to a high current (>100 mA) lose their low current capability (<100 $\mathrm{mA})$.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {STE }}$ A	$\begin{gathered} \text { caes coob } \\ \hline 12522 \end{gathered}$	Owg No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	$\stackrel{\text { scale }}{\text { NO }}$	w	SHEET 44 OF 79	

4.3.5. Dimming Control Circuit

Dimming the luminance to the desired level is accomplished by varying the applied voltage. The Series 200 switch has both linear and non-linear dimming circuits with built-in voltage control. 5 VDC switches are available with linear dimming circuits only. 28 VDC switches are available in either linear or non-linear dimming circuits. The output normalized luminance vs. input voltage of each voltage dimming circuit is shown in Figure 36,37 and 38.
For 5 VDC linear dimming, visible luminance starts at about 3.6 VDC where LED current is approximately 0.0005 A and continues to 5 VDC where current reaches 0.025 A. See Figure 36: Typical 5 VDC Linear Dimming.
For 28 VDC linear dimming, visible luminance starts at about 6 VDC where LED current is approximately 0.0002 A and continues to 28 VDC where current reaches 0.0125 A. See Figure 37: Typical 28 VDC Linear Dimming.
For 28 VDC non-linear dimming, visible luminance starts at about 7 VDC where LED current is approximately 0.0001 A and continues to 28 VDC where current reaches 0.0125 A. See Figure 38: Typical 28 VDC Non-Linear Dimming.

Figure 36: Typical 5 VDC Linear Dimming

Figure 37: Typical 28 VDC Linear Dimming

Figure 38: Typical 28 VDC Non-Linear Dimming
Following is an example of how non-linear dimming voltage control luminance is calculated.

Example:
Using the luminance data of NVIS yellow from Table XVI: NVIS llluminated Color.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIIE }}$ A	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	DWG	SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Shet	SHEET 46 OF 79	

Minimum average luminance $=250 \mathrm{fL}$.
$250 \mathrm{fL} \times 1.5$ (high) $=375 \mathrm{fL}$.
$250 \mathrm{fL} \times .75$ (low) $=188 \mathrm{fL}$.
4.3.6. Other Electrical Specifications

Contact Resistance: The switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-202, Method 307.
Low Level Circuit: The switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-202, Method 311.
Electrical Endurance: The switches are tested in accordance to the requirements of MIL-PRF-22885, at the electrical ratings specified in Table XII: Contact Rating.
Overload Cycling: The switches are tested in accordance to the requirements of MIL-PRF-22885.
Contact Bounce: The switches are tested in accordance to the requirements of MIL-PRF-22885. Simultaneity is under 2 milliseconds.
Dielectric Strength: Tests are performed at both sea level and at a reduced barometric pressure simulating 70,000 feet altitude.
Dielectric Withstanding Voltage at Atmospheric Pressure: The switches are tested in accordance to the requirements of MIL-PRF-22885, Para. 4.7.19.1, MIL-STD-202, Method 301.
Dielectric Withstanding Voltage at Reduced Pressure: The switches are tested in accordance to the requirements of MIL-PRF-22885, Para. 4.7.19.2, MIL-STD-202, Method 105C, Cond. C.
Insulation resistance: The switches are tested in accordance to the requirements of MIL-PRF-22885, MIL-STD-202, Method 302, Cond. B.
Short Circuit: The switches are tested in accordance to the requirements of MIL-PRF-22885, Method I, for 2 cycles.
4.4. Display Specifications
4.4.1. Field of View

The pushbutton switch displays are tested in accordance to the requirements of MIL-PRF-22885.
Legend area and viewing dimensions are shown in Figure 39: Legend Area and Table XIII: Viewing Area.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sizE }}$ A	$\begin{aligned} & \text { CAGE Coobs } \\ & 12522 \end{aligned}$		SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 47 OF 79	

Figure 39: Legend Area
Table XIII: Viewing Area

Viewing area	Splash-Proof dimensions - Inch [mm]	Watertight dimensions - Inch [mm]
Full screen	$\begin{gathered} 0.56^{\prime \prime} \times 0.56^{\prime \prime} \\ {[14.22 \mathrm{~mm} \times 14.22 \mathrm{~mm}]} \end{gathered}$	$\begin{gathered} 0.50^{\prime \prime} \times 0.50^{\prime \prime} \\ {[12.7 \mathrm{~mm} \times 12.7 \mathrm{~mm}]} \end{gathered}$
Half screen horizontal	$\begin{gathered} 0.56^{\prime \prime} \times 0.28^{\prime \prime} \\ {[14.22 \mathrm{~mm} \times 7.11 \mathrm{~mm}]} \end{gathered}$	$\begin{gathered} 0.50^{\prime \prime} \times 0.25^{\prime \prime} \\ {[12.7 \mathrm{~mm} \times 6.35 \mathrm{~mm}]} \end{gathered}$
Half screen - vertical	$\begin{gathered} 0.28^{\prime \prime} \times 0.56^{\prime \prime} \\ {[7.11 \mathrm{~mm} \times 14.22 \mathrm{~mm}]} \end{gathered}$	$\begin{gathered} 0.25^{\prime \prime} \times 0.50^{\prime \prime} \\ {[6.35 \mathrm{~mm} \times 12.7 \mathrm{~mm}]} \end{gathered}$
Quarter screen	$\begin{gathered} 0.28^{\prime \prime} \times 0.28^{\prime \prime} \\ {[7.11 \mathrm{~mm} \times 7.11 \mathrm{~mm}]} \end{gathered}$	$\begin{gathered} 0.25^{\prime \prime} \times 0.25^{\prime \prime} \\ {[6.35 \mathrm{~mm} \times 6.35 \mathrm{~mm}]} \end{gathered}$

4.4.2. Legends

Standard Font Style \& Size.
The standard font style is 'alternate gothic number 2' (AG2), available in capital letters and numeric, plus all the character and symbols which are available as shown in Figure 40: Standard Font Size and Style.

Use or disclosure of restrictions of the titl	on this sheet is subject to ocument.	${ }^{\text {sile }}$ A	$\begin{aligned} & \text { CAGE CDOE } \\ & 12522 \end{aligned}$	DWG No	SERIES 200 SCD	${ }^{\text {ReV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI	SHEET 48 OF 79	

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789! @\# \$\% ^ \&*()'.," $\backslash+/$:;<=>?
`~\#\#©ii"《»-士 ${ }^{123}$

Figure 40: Standard Font Size and Style
Note: Lower case characters not available as standard option in this font.
Unless otherwise specified, all symbols will be proportional to the size of the AG2 font.

RECOMMENDED LETTER RATIO

HEIGHT TO WIDTH RATIO: HW=2
HEIGHT TO STROKE WIDTH: H/b=6

Figure 41: Character Height
The character height, as defined in Figure 41: Character Height above, shall be the distance (in decimal inches) from the top to the bottom of a capital letter (no descender) in the standard font, AG2. The standard character heights are as follow: 0.072", $0.087^{\prime \prime}, 0.100^{\prime \prime}, 0.125^{\prime \prime}$, and $0.145^{\prime \prime}$.
The approximate number of AG2 characters of a given size which will fit into a display area is given in Table XXIII: Display Style and Character Size Option. Since AG2 characters are proportionally spaced (i.e., a character " M " or " W " is about three times as wide as the character "I") the actual number of characters will depend on the specific characters used. If the specific characters used in a given area exceed the space available, but by no more than 10%, the characters shall be condensed by 10%, using the same height but less width, in order to accommodate the legend as requested by the customer.

Use or disclosure o restrictions of the title	ed on this sheet is subject to ocument.	A	$\begin{aligned} & \text { Ace coos } \\ & 12522 \end{aligned}$	SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEIEI SHEET 49 OF 79	

Optional Font Style and Size, Non-Roman Alphabets and Symbols. By special order, other font styles and sizes may be ordered in their normal, condensed, bold, or expanded variations. These typefaces are available in either or both upper and lower cases. Depending on the character width of the chosen fonts, the number of characters per line may be different than of AG2.
Non-Roman Alphabets - Graphic representative is required from customers for non-roman alphabets such as Hebrew, Russian, Japanese, Korean, Chinese, Arabic, Sanskrit, etc.
Standard and Complex Shapes - It is recommended that the customers to provide graphic representative or drawings for standard and complex shapes such squares, rectangles, circles, icons, or graphic symbols.
4.5. Optical Performance

The pushbuttons illuminated color is tested in accordance to the requirements of MIL-PRF-22885.
4.5.1. Luminance Performance

The pushbutton luminance is tested in accordance to the requirements of MIL-PRF-22885, for Non-NVIS colors and NVIS colors.
See Table XIV: LED Luminance Performance for the minimum average luminance.

Table XIV: LED Luminance Performance

	Minimum Luminance (foot-lamberts)					
22885 Symbol	C	B	H	N	W	S
S200 Code	1	2	3	4	5	6
Red	100	100	150	2.0	125	200
Green	100	100	150	2.5	100	250
Aviation Yellow	250	250	300	3.0	250	450
Lunar White	150	150	200	3.0	150	450
Blue	100	100	100	2.0	100	200
Aviation Green	100	100	100	2.0	100	250
White	150	150	175	2.5	150	450

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { Eacte cois } \\ & 12522 \end{aligned}$	OwG No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	$\stackrel{\text { scale }}{\text { NO }}$	${ }^{\text {wr}}$	SHEET 50 OF 79	

Table XV: Standard Color Limits

Standard Color limits													
Red		Green		Aviation Yellow		Lunar White		Blue		Aviation Green		White	
x	y	x	y	X	y	X	y	X	y	X	Y	X	y
0.695	0.285	0.3	0.56	0.545	0.425	0.4	0.375	0.25	0.33	0.14	0.47	0.48	0.395
0.705	SL 1/	0.3	SL 1/	0.56	SL 1/	0.4	0.42	0.25	0.42	0.29	0.47	0.48	0.435
0.65	0.33	0.375	0.56	0.59	0.382	0.48	0.375	0.33	0.33	0.03	SL 1/	0.54	0.431
0.66	SL 1/	0.375	SL 1/	0.604	SL 1/	0.48	0.42	0.33	0.42	0.185	SL 1/	0.54	0.391

1/ The term "SL" indicates where intersections occur with the spectrum locus on the CIE 1931 chromaticity diagram (Figure 43: CIE 1931 Chromaticity Diagram).
@ 14 Vdc non-linear dimming the luminance approximately 21 foot-lambert, @ 28 Vdc non-linear dimming the luminance approximately 505 foot-lambert (Figure 42: Typical Luminance vs Voltage (Non-Linear Dimming)).

Figure 42: Typical Luminance vs Voltage (Non-Linear Dimming)

Use or disclosure of restrictions of the title	ed on this sheet is subject to ocument.	${ }^{\text {size }}$ A	$\begin{aligned} & \text { CAGEE Code } \\ & 12522 \end{aligned}$	${ }^{\text {owg No }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 51 OF 79	

X
The colors are expressed as " x " and " y " coordinates on the standard 1931 CIE chromaticity diagram. Illuminated colors, measured as specified herein, shall be within the limits bounded by the coordinates listed for each color. Refer to Figure 43: CIE 1931 Chromaticity Diagram and Table XV: Standard Color Limits.

Figure 43: CIE 1931 Chromaticity Diagram
4.5.2. NVIS Compatibility

NVIS compatibility is tested in accordance to the requirements of MIL-PRF-22885, MIL-STD-3009, and MIL-L-85762 (when applicable).
Available NVIS colors are white, blue, red, green A, green B, yellow A and yellow B.
In general, NVIS Green A and Green B are used for illuminated controls, caution and advisory signals. NVIS Yellow is used for master caution and warning signals. NVIS Red is only applicable to Class B systems and is used as a warning signal. NVIS blue and white are used for advisory and identification.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {size }} \mathrm{A}$	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	${ }^{\text {owe }}$	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	Shet	SHEET 52 OF 79	

NVIS GREEN B
$u^{\prime}=0.131$
$v^{\prime}=0.623$
$r=0.057$

U'
The colors are expressed as u^{\prime} and v^{\prime} coordinates on the U.C.S 1976 chromaticity diagram. See Figure 44: U.C.S. 1976 Chromaticity Diagram and Table XVI: NVIS Illuminated Color.

Figure 44: U.C.S. 1976 Chromaticity Diagram

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {size }}$ A	$\begin{gathered} \text { Cace coos } \\ 12522 \end{gathered}$	owg	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 53 OF 79	

Table XVI: NVIS Illuminated Color

NVIS Illuminated color									
Color	Minimum Luminance Estimate (fL)	Chromaticity Coordinates			Contrast - $0 \% / 45^{\circ}$ Degrees		Radiance		
		u'	v^{\prime}	r	"ON"	"OFF"	Nra	Nrb	Scaled Luminance (fL)
Green A	150	0.088	0.543	0.037	0.60	0.10	$1.7 \mathrm{E}-10$	$1.7 \mathrm{E}-10$	0.10
Green B	150	0.131	0.623	0.057	0.60	0.10	$1.7 \mathrm{E}-10$	$1.7 \mathrm{E}-10$	0.10
Yellow A	150	0.274	0.622	0.083	0.60	0.10	$1.7 \mathrm{E}-10$	-	0.10
Yellow B	150	0.274	0.622	0.083	0.60	0.10	-	$1.5 \mathrm{E}-7$	15.0
Red	80	0.450	0.550	0.060	0.30	0.10	-	$1.4 \mathrm{E}-7$	15.0
White	80	0.190	0.490	0.040	0.30	0.10	-	$2.2 \mathrm{E}-10$	0.10
Blue	. 50	0.175	0.167	0.040	N/A	0.10	-	$1.00 \mathrm{E}-08$	0.50

Where: u^{\prime} and $\mathrm{v}^{\prime}=1976$ UCS chromaticity coordinates of the center point of the color area.
$r=$ radius of the allowable circular area for the color. All values are per MIL-STD-3009 and MIL-L-85762 (when applicable).
Night Vision Imaging System Classes - Two NVIS classes have been defined, based on the cut-off frequency of the filters used in the goggles. Class A NVIS uses the 625 nanometer (nm) minus blue objective lens filter while Class B uses the 665 nm filter. The lower cut-off of the Class A filters allows for maximum near-IR response to tree bark, grass and other green vegetation, a general requirement for helicopter applications operating below tree-top level. The Class B filter, with the higher cut-off, allows the goggles to be used in conjunction with orange and red warning indicators in the cockpit, and is intended for aircraft which are operating above tree level.
NVIS Radiance - The NVIS radiance (NR) is measured for Class A (NRA) for compatibility with 625 nm applications, and for Class B (NRB) for 665 nm systems. Both are the result of spectral radiance measurements, in 5 nm increments, from 450 to 930 nm . The readings are automatically scaled by the spectroradiometer system to a selected brightness level given in foot-lamberts.

A	12522
$\stackrel{\text { calat }}{\text { NONE }}$	

NVIS spectral radiance measurements for the Series 200 shall be made on a calibrated spectroradiometer. The luminance setting for these measurement shall be $15 \pm 0.5 \mathrm{fL}$ (or full rated drive condition, whichever is less) as determined either by photometer or spectroradiometer measurement. The NVIS radiance value shall then be scaled from the NR value at the measured luminance to the NR at the specified luminance level. Table XVII: Radiance Requirements has the summary of the NVIS radiance specification for configurations which are applicable to the Series 200 Product Line.

Table XVII: Radiance Requirements
Radiance Requirements

Radiance Requirements								
NVIS color	TYPE I SYSTEM				TYPE II SYSTEM			
	Class A		Class B		Class A		Class B	
	Min NRa	Max NRa	Min NRb	Max NRb	Min NRa	Max NRa	Min NRb	Max NRb
Blue	N/A	1.2 E-08	N/A	1.1 E-08	N/A	1.2 E-08	N/A	1.1 E-08
Red	5.0 E-08	$1.5 \mathrm{E}-07$	$4.7 \mathrm{E}-08$	$1.4 \mathrm{E}-07$	N/A	$1.5 \mathrm{E}-07$	N/A	$1.4 \mathrm{E}-07$
Green B	N/A	$1.7 \mathrm{E}-10$						
Yellow	5.0 E-08	$1.5 \mathrm{E}-07$	4.7 E-08	$1.4 \mathrm{E}-07$	N/A	$1.5 \mathrm{E}-07$	N/A	$1.4 \mathrm{E}-07$
White	N/A	$1.7 \mathrm{E}-10$						
Green A	N/A	$1.7 \mathrm{E}-10$						

4.5.3. Sunlight Readability

The Sunlight Readability is tested in accordance to the requirements of MIL-PRF-22885. The contrast ratio of each lighted legend character to the background exceeded the 0.6 minimum requirements, and for unlighted legend character to the background, the average contrast ration is ≤ 0.1, see Table XXIII: Display Style and Character Size Option.
Sunlight readable displays in the Series 200 Product Line provide a black, non-reflective, dead-front appearance when not lighted and brightly lighted legend characters, in the specified colors, when the displays are energized. This display (type 6) protects the crew station viewer from false indications in direct sunlight at high altitude. The design overcomes two problems associated with high-intensity light directed at the instrument panel. First, when lighted, it enables the viewer to read the legend despite the intense brightness of direct sunlight at 70,000 feet altitude. Secondly, the design prevents this high intensity light from causing the legends to falsely appear to be lighted when they are actually unlighted. The measure of its effectiveness is by means of calculating two sets of contrast
$\left.\begin{array}{|c|c|c}\text { SIZE } & \text { CAGE CODE } \\ \text { SCALE } \\ \mathrm{NONE} & 12522\end{array}\right)$ DWG NO
ratios based on laboratory measurements conducted under very specific conditions.

Contrast Ratio

As specified in MIL-PRF-22885, the contrast ratios CL and Cul, calculate for each character is as follows:
The lighted contrast (ON/BACKGROUND) is defined by CL = $(B 2-$ B1)/B1.
The unlighted contrast (OFF/BACKGROUND) is defined by CUL = (B3-B1)/B1.
B1 = Average background luminance
B2 = Average character luminance, legend lighted
B3 = Average character luminance, legend unlighted
SLR performance of sealed switches - SLR performance shall not be degraded for standard Splash-proof or Watertight seals. SLR requirements do not apply to Solvent Resistant or Hazardous Environment Seals.

Table XVIII: Type 6 Contrast

Type 6 Contrast		
Color	Average Legend On Contrast MIN	Average Legend Off Contrast MAX
Red	0.6	0.1
Green	0.6	0.1
Aviation Yellow	0.6	0.1
Aviation Green	0.6	0.1
Blue	0.6	0.1
Lunar White	0.6	0.1
White	0.6	0.1

4.6. Environmental Specifications

Temperature Characteristics

The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885.

Table XIX: Operating Temperature Range

Condition	Temperature
Operating with lamps un-energized	$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating with lamps energized	$-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Max 24 hrs.	$-65^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { Eacte cois } \\ & 12522 \end{aligned}$	${ }^{\text {Wwo no }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	$\stackrel{\text { scale }}{\text { NO }}$	${ }^{\text {wr}}$	SHEET 56 OF 79	

Touch Temperature: When switches are tested as specified below, the maximum difference between the stabilized lens face temperature and the ambient temperature shall not exceed $+10^{\circ} \mathrm{C}$.
Test method: The test method shall be in accordance with EIA448.2 using the recommended panel cutout. The test shall be performed with each of the standard LED voltages at full rated current and at 100 percent duty cycle.
Salt Spray: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and MIL-STD-202, Method 101E, Cond. A.
Thermal Shock: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885 and, MIL-STD-202, Method 107G, Test Condition A.
Vibration: The pushbutton switches are tested in accordance to the requirements of MIL-STD-202, and MIL-PRF-22885 vibration grade 3.
Acceleration: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885.
Shock: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-202, Method 213 .
Watertight and splash-proof switches: high impact shock in accordance with MIL-S-901, grade A, Class II (for deck-mounted equipment) when attached to the anvil plate of the shock machine by means of standard mounting with simulated console, which provides resilient mounting typical on in-service use within "deck mounted" electronic cabinets or panels. These units are not recommended for direct "hull mounted" applications.
High Impact Shock: The pushbutton switch shall meet the requirements of MIL-S-901, Grade A, Class II.
Moisture Resistance: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-202, Method 106G.
Splash Proof Seal: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-108 paragraph 4.9.
Splash-Proof Seal: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-108 paragraph 4.9.
Watertight Seal: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-108 paragraph 4.13.
Solvent Resistance Seal: The pushbutton switches are tested in accordance to the requirements of MIL-STD-810, method 504, procedure II.

Explosion: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-202, Method 109G.

A	${ }^{\text {anar cous }}$
$\stackrel{\text { scat }}{\text { NONE }}$	

SERIES 200 SCD

Sand \& Dust: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, and MIL-STD-202, Method 110, Cond. B.
EMI/RFI Shielding: The pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885.
4.7. Material Requirements

Materials and processes specified herein. Detailed part drawings, bills of material, bills of operation, process specifications and other manufacturing documentation are subordinate to this specification. In case of conflict, this document shall prevail. When a definite material is not specified herein, material or process shall be used which will enable the switches to meet the performance requirements of this specification.
All components contained in S200 product lines are considered REACH and RoHS compliant.
Dissimilar Metals - The pushbutton switches are manufactured in accordance to the requirements of MIL-PRF-22885. Refer to Staco Systems Engineering Design Standard on Dissimilar Metals and MIL-STD-889 for guidance.
Corrosion Resistance - All metal components, including current carrying components, shall be of corrosion-resistant material, or shall be suitably protected to resist corrosion.
Flame Retardant - Insulation materials used in the pushbutton switches are tested in accordance to the requirements of MIL-PRF-22885, Para. 3.5.2, which meet flammability requirements of $94 \mathrm{~V}-0$ in accordance with UL 94.
Front Panel Exposure - Parts designed to be exposed at the front of the panel after assembly shall have a black lusterless finish. These include pushbutton housings, panel spacers, pushbutton guards, and other associated mounting hardware designed to be exposed at the front of the panel after assembly.
Finish - Black anodize over aluminum alloy per MIL-A-8625, Type II, Class 2. Chemical film finishes per MIL-DTL-5541, Type II, Class 3.
Terminal Plating - Gold plating per MIL-G-45204. PC terminals are plated to facilitate hand, wave or flow soldering methods. Crimp pin terminals per MIL-G-45204.
Silicon Rubber - Silicone rubber per ZZ-R-765.
Fungus - The pushbutton switches are tested in accordance to the requirements of MIL-STD-454, Requirement 4.
Fluor Silicone - Fluor Silicone Rubber and Elastomer, Oil and Fuel Resistant per MIL-R-25988.
Tin Plated Finish - Lead content is 3% minimum.

Use or disclosure o restrictions of the titl	ed on this sheet is subject to ocument.	${ }^{\text {size }}$ A	$\begin{array}{\|c} \text { cace coob } \\ 12522 \end{array}$	${ }^{\text {a }}$ SERIES 200 SCD	${ }^{\mathrm{EEV}} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	$\stackrel{\text { scale }}{\text { NONE }}$	${ }^{\text {wr}}$	SHEET 58 OF 79	

4.8. Other Requirements
4.8.1. Marking

Permanency and legibility of markings shall conform to requirements of MIL-STD-202, Method 215 for resistance to solvents.
4.8.1.1. For non MIL SPEC parts, the following shall be provided as a baseline and as shown in Figure 45: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown), Figure 46: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown), and Figure 47: Non-MIL spec marking (4 pole \& PC Extended Version shown).
a.
b. Cage code (12522)
c. Date code (YYWW; year year week week).
d. Applicable voltage.
e. Assembly part number (or customer PN).
f. Switch schematic.

Figure 45: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown)

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	12522	Owo no SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	$\begin{aligned} & \text { scall } \\ & \text { NONE } \end{aligned}$	wr	SHEET 59 OF 79	

Figure 46: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown)

Figure 47: Non-MIL spec marking (4 pole \& PC Extended Version shown)

4.8.1.2. For MIL SPEC parts, the following shall be provided as a baseline and as shown in Figure 48: MIL Spec Marking (4 pole \& PC Extended Version Shown).
a.
b. Cage code (12522)
c. Date code (YYWW; year year week week).
d. Applicable voltage.
e. Assembly part number (or customer PN).
f. Switch schematic.
g. MIL spec part number.

Note: Part shall be marked same as Figures 45-47 with the following addition.

Figure 48: MIL Spec Marking (4 pole \& PC Extended Version Shown)
4.8.1.3. For custom part number markings, notes a thru fapply as a minimum unless otherwise specified. See Figure 49: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown).

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SILE }} \mathrm{A}$	$\begin{gathered} \text { CAGE CODE } \\ 12522 \end{gathered}$	${ }^{\text {owg No }}$ SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 61 OF 79	

MIL SPEC \# IF APPLICABLE

Figure 49: Non-MIL Spec Marking (4 pole \& PC Extended Version Shown)

4.8.2. User Instructions and Quality

Each package containing switches or indicators shall contain a copy of 'Pushbutton extraction and installation instruction' Technical Bulletins 215 and 216.

4.8.2.1. Workmanship

Products shall be manufactured in such a manner as to be uniform in quality and free from cracked or displaced parts, sharp edges, burrs, and other defects which would be detrimental to their serviceability or performance.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { Eacte cois } \\ & 12522 \end{aligned}$	OwG No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	${ }^{\text {wr}}$	suter SHEET 62 OF 79	

4.8.2.2. Quality

Material and products shall be controlled and inspected per the requirements of MIL-I-45208. The maintenance of the calibration system to control the accuracy of the measuring and test equipment shall be in accordance with MIL-STD-45662. Inspection of product for delivery shall consist of Group A inspections per MIL-PRF-22885 and the applicable slash sheet.

4.8.2.3. Changes in Specifications

Specifications defined herein are accurate at the time of release and publication of this revision of this document. Staco Systems reserves the right to make changes without prior notice.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{array}{\|c} \text { cace coos } \\ 12522 \end{array}$	${ }^{\text {SWG No }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET 63 OF 79	

This page intentionally left blank

Use or disclosure of restrictions of the titl	on this sheet is subject to ocument.	${ }^{\text {SIIE }}$ A	$\begin{gathered} \text { cage code } \\ 12522 \end{gathered}$	DwG No	SERIES 200 SCD	${ }^{\text {ReV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 64 OF 79	

5.0 Ordering Information

This section contains the information necessary to order the standard Series 200 pushbutton switch configurations and its features described in this specification.

PART NUMBER MODEL
The Part Number Model (PNM) shall be constructed as illustrated in Figure 50: Part Number Model. See, Table XXI: Electrical Option, Table XXII: Enclosure Design, Table XXIII: Display Style and Character Size Option, option, Table XXIV: Display Type Option and Table XXV: Illuminating Color Option.

Figure 50: Part Number Model

Use or disclosure restrictions of the tit	on this sheet is subject to ocument.	${ }^{\text {sile }}$ A	$\begin{gathered} \text { CAGE Code } \\ 12522 \end{gathered}$	Dws	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEEI	SHEET 65 OF 79	

Table XX: Mechanical Option

Mechanical Option					
PNM Code	Action	PNM Code	Termination	PNM Code	Pole
N	No Action	S	Solder	0	Indicator
M	Momentary	P	PC	1	1-pole double throw
A	Alternate	C	Crimp pin	2	2-pole double throw
				4	4 -pole double throw

Table XXI: Electrical Option

Table XXII: Enclosure Design

Enclosure Design			
PNM Code	MIL-PRF-22885	Seal Description/Option	Enclosure Type
1*	2	Drip-Proof 1/	I (solder/PCB terminations) and III (Crimp pin termination)
	4	Splash-Proof 1/	
2	3	Watertight I/	II (solder/PCB terminations) and IV (Crimp pin termination)
3		Solvent Resistant 2/	
4	2	Drip-Proof 1/	I (solder/PCB terminations) and III (Crimp pin termination) with extended housings, lens retainer, and lens jacket for improved lighting.
	4	Splash-Proof 1/	

1/ In accordance to MIL-STD-108.
2/ In accordance to MIL-STD-810, method 504, procedure II.

*Not Available for New Design.

A	$\begin{aligned} & \text { ACEECDEE } \\ & 12522 \end{aligned}$
scale	wr

DWG NO

Table XXIII: Display Style and Character Size Option

$\begin{aligned} & \text { PNM } \\ & \text { CODE } \end{aligned}$	CHARACTER SIZE IN INCHES (REF)	DISPLAY AREA NO.			EGEND	EEA NO		DISPLAY STYLE DESCRIPTION
					ORIZ.LIN	S PER A		
				(C) CHARACTERS PER LINE 1/				
				1 HxC	2 HxC	3 HxC	4 HxC	
10	NONE	1		NONE	NONE	NONE	NONE	FULL SCREEN DISPLAY
11	0.072			5×11	x	x	x	
12	0.087			4×9	x	x	x	
13	0.100			4×8	x	x	x	
14	0.125			3×7	x	x	x	
15	0.145			2X5	X	x	X	
20	NONE	1		NONE	NONE	NONE	NONE	2-WAY HORIZONTAL SPLIT SCREEN DISPLAY
21	0.072			2x11	2×11	x	x	
22	0.087			2x9	2x9	x	x	
23	0.100			1×8	1×8	x	x	
24	0.125			1×7	1x7	x	x	
25	0.145			1×6	1×6	x	x	
30	NONE	12		NONE	NONE	NONE	NONE	2-WAY VERTICAL SPLIT SCREEN DISPLAY
31	0.072			5x5	5x5	x	x	
32	0.087			4×4	4×4	x	x	
33	0.100			4×3	4×3	x	x	
34	0.125			3x3	3x3	x	x	
35	0.145			2x2	2x2	x	X	
40	NONE	2		NONE	NONE	NONE	NONE	3-WAY SPLIT SCREEN DISPLAY HORIZONTAL TOP HALF
41	0.072			2x11	2x5	2x5	x	
42	0.087			2x9	2x4	2x4	x	
43	0.100			1×8	1×4	1×4	x	
44	0.125			1x7	1×2	1x2	x	
45	0.145			1x6	1x2	1x2	x	
50	NONE	$\begin{gathered} 12 \\ \\ \end{gathered}$		NONE	NONE	NONE	NONE	3-WAY SPLIT SCREEN DISPLAY HORIZONTAL BOTTOM HALF
51	0.072			2x5	2x5	2×11	x	
52	0.087			2×4	2×4	2x9	x	
53	0.100			1×4	1×4	1×8	x	
54	0.125			1x2	1x2	1×7	x	
55	0.145			1×2	1x2	1x6	X	
60	NONE	12		NONE	NONE	NONE	NONE	3-WAY SPLIT SCREEN DISPLAY VERTICAL LEFT HALF
61	0.072			2x5	5×5	2x5	x	
62	0.087			2x4	4×4	2x4	x	
63	0.100			1×4	4×3	1x4	x	
64	0.125			1×2	3×3	1x2	x	
65	0.145			1x2	2x2	1x2	x	
70	NONE			NONE	NONE	NONE	NONE	3-WAY SPLIT SCREEN DISPLAY VERTICAL RIGHT HALF
71	0.072			2x5	2x5	2×11	x	
72	0.087			2×4	2x4	2×9	x	
73	0.100			1×4	1×4	1×8	X	
74	0.125			1×2	1x2	1×7	X	
75	0.145			1x2	1x2	1×6	x	
80	NONE	1 2 3 4		NONE	NONE	NONE	NONE	4-WAY SPLIT SCREEN DISPLAY
81	0.072			2x5	2x5	2x5	2x5	
82	0.087			2×4	2×4	2×4	2×4	
83	0.100			1×4	1×4	1×4	1×4	
84	0.125			1x2	1x2	1x2	1x2	
85	0.145			1×2	1x2	1×2	1x2	

Table XXIV: Display Type Option

Display type option				
PNM Code	MIL-PRF22885	Description	NonIlluminated	Illuminated
1	C	Visible opaque black legends on translucent color background. When illuminated, the background appears in color while the legends remain opaque black.	LED	LED
2	B	Obscure legends on opaque black background. When illuminated, the background appears in color while the legends remain opaque black.		LED
3	H	Obscure legends on opaque black background. When illuminated, the legends appear in color while the background remains opaque black.		LED
4	N	Visible trans-reflective white legends on an opaque black background. When illuminated, the legends appear in color while the background remains opaque black.	LED	LED
5	W	Visible opaque black legends on transreflective white background. When illuminated, the background appears in color while the legends remain opaque black.	LED	LED
6	S	Obscure legends on opaque black background. When illuminated, the legends are sunlight readable while the background remains opaque black.		LED
7	S	Obscure legends on opaque black background. When illuminated, the legends are NVIS compatible while the background remains opaque black.		LED

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	12522	Owe No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	$\begin{aligned} & \text { scall } \\ & \text { SONE } \end{aligned}$	wr	SHEET 68 OF 79	

Display Type Option				
PNM Code	MIL-PRF- 22885	Description	NonIlluminated	Illuminated
A*	-	Visible opaque white legends on an opaque black background. When illuminated, the background appears in color while the legends remain opaque white.	LED	
E*	-	Visible trans-reflective white legends on an opaque black background. When illuminated, the legends appear in color while the background remains opaque black	LED	LED
F*	-	Obscure legends on translucent white background. When illuminated, the background appears in color with white opaque white legends.		E1)
G*	-	Visible opaque white legends on translucent color background. When illuminated, the background appears in color while legends remain opaque white.	LED	

* Available as non-standard catalogue display type

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {sile }} \mathrm{A}$	$\begin{array}{\|} \text { CACEEDEE } \\ 12522 \end{array}$		SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 69 OF 79	

Table XXV: Illuminating Color Option

Illuminating Color Option		
PNM cod e	Non NVIS Illominated Color	NVIS Illuminated Color
$\mathbf{0}$	White	Blue
$\mathbf{1}$	Red	Red
$\mathbf{2}$	Green	Green B
$\mathbf{3}$	Aviation yellow	Yellow B
$\mathbf{4}$	Lunar white	White
$\mathbf{5}$	Not available	Yellow A
$\mathbf{6}$	Blue	Green A
$\mathbf{7}$	Aviation green	

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {size }} \mathrm{A}$	$\begin{gathered} \text { Cage coos } \\ 12522 \end{gathered}$	${ }^{\text {jw wo }}$ SERIES 200 SCD	${ }^{\mathrm{EV}} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	$\begin{aligned} & \text { scale } \\ & \text { NONE } \end{aligned}$	wr	sher SHEET 70 OF 79	

6.0 Accessories

Accessories which apply to pushbutton switch assembly products are identified by $15 X X X-T A B$ numbers. Following is the list of all standard accessory products and their part numbers.
6.1. Guards: See Table XXVI: Switch Guards.

Table XXVI: Switch Guards

Switch Guard (enclosure types II,V)			
Transparent Guard		Metal Guard	
Cover color	Part number	Color	Part number
Clear	15089	Black anodize finish	$15600-001$
Red	$15089-1$	Red finish	$15600-002$
Clear with red border	$15089-2$	Figure 52: Metal Switch Guard	

Figure 51: Transparent Switch Guard

15089

15089-1

15089-2

Figure 51: Transparent Switch Guard

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.

A	12522
$\stackrel{\text { scafe }}{\text { NOA }}$	

Figure 52: Metal Switch Guard
6.2. Tools
6.2.1. Pushbutton Extraction Tool (15193)

It facilitates the removal of display pushbuttons. See Figure 53: Pushbutton Extraction Tool.

Use or disclosure o restrictions of the titl	ed on this sheet is subject to ocument.	${ }^{\text {sine }} \mathrm{A}$	$\begin{aligned} & \text { CAGE CDOE } \\ & 12522 \end{aligned}$	${ }^{\text {owG No }}$ SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 72 OF 79	

.320in

Figure 53: Pushbutton Extraction Tool

6.2.2. Matrix Switch Extraction Tool (15056)

It facilitates and eases the removal of switch/indicator assemblies from matrix housing. After removing the pushbutton and loosening the two locking cams, the tool is inserted in the front of the assembly and its rubber block expanded by tightening the looped handle (Figure 54: Matrix Switch Extraction Tool).

Use or disclosure restrictions of the tit	ed on this sheet is subject to ocument.	${ }^{\text {STIE }} \mathrm{A}$	$\begin{gathered} \text { CAGE CDOE } \\ 12522 \end{gathered}$	${ }^{\text {owg No }}$ SERIES 200 SCD	${ }^{\text {EV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET SHEET 73 OF 79	

Figure 54: Matrix Switch Extraction Tool
6.2.3. Crimp Pin Tools and Positioners (15278 and 15279)

Part Number 15278 (Crimping Tool) and 15279 (Positioner) are to be used with MIL-C-39029/22-192 socket contact wire termination crimp pins, see Figure 55: Crimp Tool and Positioner. The following Table XXVII: Crimp Pin and Positioner P/N's shows Staco Systems part number and the corresponding military standard part number.

Table XXVII: Crimp Pin and Positioner P/N's

Part Number	Standard Military Part Number
15278	$M 22520 / 7-01$
15279	$M 22520 / 7-12$

Crimping Tool and Turret are used for attaching socket contact crimp to \#20-24 wires for all crimp pins switches / indicators.

Use or disclosure of data contained on this sheet is subject to ${ }^{\text {sliz }}$ restrictions of the title page of this document.

A	${ }^{\text {cait cois }}$	SERIES 200 SCD	1.8
$\stackrel{\text { scale }}{\text { NOE }}$	"	SHEET 74 OF 79	

Figure 55: Crimp Tool and Positioner

6.2.4. Wire Connector Insertion and Removal Tool (15190)

Standard M81969/16-01 Insertion and Removal Tool used for inserting or removing of wire connectors with crimp pins receptacle, MIL-C-39029/22-192 pins. See Figure 56: Wire Connector Insertion and Removal Tool.

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		${ }^{\text {SIzE }}$ A	CAGE CODE 12522	${ }^{\text {owg }}$	SERIES 200 SCD	${ }^{\text {REV }} 1.8$
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	wr	SHEET	SHEET 75 OF 79	

Figure 56: Wire Connector Insertion and Removal Tool
6.2.5. Insulator Plug (15177)

Unused terminal openings in termination receptacles of all crimp pins switches can be closed off by inserting standard MS27488A20 plastic insulator plugs. The insulator plugs can be used with MIL-C-39029/22-192 compliant receptacles. See Figure 57: Insulator Plug.

Figure 57: Insulator Plug

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	12522	ows no SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	$\begin{aligned} & \text { scall } \\ & \text { NONE } \end{aligned}$	wr	SHEET 76 OF 79	

6.2.6. Dress Bezel Mounting Cleat Assembly (156107)

The mounting cleat assemblies, as shown in Figure 58: Cleat Assembly, are supplied as standard parts with the matrix housing. Additional cleat assemblies may be ordered, if desired, for applications of severe vibration or shock. They are packaged 5 to a plastic envelope.

Figure 58: Cleat Assembly
6.2.7. Crimp Pin Wire Termination Receptacle (156106)

Additional receptacles may be ordered separately as replacement parts for use with $\$ 200$ crimp pin switches/ indicators. See Figure 22: Crimp Termination.
6.2.8. Crimp Pin Wire Termination (15276)

Addition crimp pin wire termination can be ordered separately as replacement parts for use with crimp pin termination. See Figure 23: Crimp Pin.

6.2.9. Panel Seals (15097)

Additional panel seals may be ordered separately as replacement parts or for use with extended mount applications. See Figure 2: Splash-Proof (Solder Termination Extended Version Shown).
6.2.10. Watertight Panel Seals (12497)

Additional panel seals may be ordered separately as replacement parts or for use with extended mount applications. See Figure 3: Watertight (Solder Termination Version Shown).
6.2.11. Weight of Accessories

The typical weight of the switch accessories are given in Table VII: Pushbutton Switch Weight.

Table XXVIII: Accessories Weight

Description	Ounces (max.)	Grams (max.)
15089 Switch Guard	0.061	1.9
$15089-1$ Switch Guard	0.064	2.0
$15089-2$ Switch Guard	0.064	2.0
$15600-001$ Switch Guard	0.064	2.0
$15600-002$ Switch Guard	0.064	2.0
15193 Pushbutton Extraction Tool	0.32	10
15056 Matrix Switch Extraction Tool	1.125	35
15278 Crimping Tool	9.32	290
15279 Positioner	0.35	11
15190 Wire Insertion and Removal Tool	0.007	.230
15177 Insulator Plug	0.002	.080
156107 Dress Bezel Cleat Assembly	0.06	2.1
156106 Crimp Wire Termination Receptacle	0.16	5
15276 Crimp Pins	0.004	.130
15097 Panel Seals	0.002	.075
12497 Water Panel Seals	0.003	.100

Use or disclosure of data contained on this sheet is subject to restrictions of the title page of this document.		A	$\begin{aligned} & \text { Eacte cois } \\ & 12522 \end{aligned}$	OwG No SERIES 200 SCD	1.8
SEE SHEET 1	DO NOT SCALE DRAWING	NONE	${ }^{\text {wr}}$	SHEET 78 OF 79	

7.0 Technical Bulletins

Table XXIX: Technical Bulletins

Technical Bulletin Number	Description
TB-207	Receptacle assembly installation procedure
TB-215	Installation Procedure for Series 200 Pushbutton Switches
TB-216	Installation Procedure for Series 200 Watertight Switch
TB-221	Installation and Removal Procedure for Series 200 Pushbutton Switches, PCB Type, In a Sub-Assembly

Use or disclosure of data contained on this sheet is subject to ${ }^{\text {sIzE }}$ restrictions of the title page of this document.

A	${ }^{\text {case cois }}$	SERIES 200 SCD	${ }^{1} 1.8$
$\xrightarrow{\text { scafe }} \mathrm{NONE}$		SHEET 79 OF 78	

